Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38063767

RESUMO

A new method for the synthesis and deposition of tungsten oxide nanopowders directly on the surface of a carbon-fiber-reinforced polymer composite (CFRP) is presented. The CFRP was chosen because this material has very good thermal and mechanical properties and chemical resistance. Also, CFRPs have low melting points and are transparent under ionized radiation. The synthesis is based on the direct interaction between high-power-density microwaves and metallic wires to generate a high-temperature plasma in an oxygen-containing atmosphere, which afterward condenses as metallic oxide nanoparticles on the CFRP. During microwave discharge, the value of the electronic temperature of the plasma, estimated from Boltzmann plots, reached up to 4 eV, and tungsten oxide crystals with a size between 5 nm and 100 nm were obtained. Transmission electron microscopy (TEM) analysis of the tungsten oxide nanoparticles showed they were single crystals without any extended defects. Scanning electron microscopy (SEM) analysis showed that the surface of the CFRP sample does not degrade during microwave plasma deposition. The X-ray attenuation of CFRP samples covered with tungsten oxide nanopowder layers of 2 µm and 21 µm thickness was measured. The X-ray attenuation analysis indicated that the thin film with 2 µm thickness attenuated 10% of the photon flux with 20 to 29 KeV of energy, while the sample with 21 µm thickness attenuated 60% of the photon flux.

2.
Materials (Basel) ; 14(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671682

RESUMO

The effects induced by microwave field upon tungsten wires of different diameters were investigated. Tungsten wires with 0.5 and 1.0 mm diameters were placed in the focal point of a single-mode cylindrical cavity linked to a microwave generator and exposed to microwave field in ambient air. The experimental results showed that the 0.5 mm diameter wire was completely vaporized due to microwaves strong absorption, while the wire with 1 mm diameter was not ignited. During the interaction between microwaves and tungsten wire with 0.5 mm diameter, a plasma with a high electronic excitation temperature was obtained. The theoretical analysis of the experiment showed that the voltage generated by metallic wires in interaction with microwaves depended on their electric resistance in AC and the power of the microwave field. The physical parameters and dimension of the metallic wire play a crucial role in the ignition process of the plasma by the microwave field. This new and simple method to generate a high-temperature plasma from a metallic wire could have many applications, especially in metal oxides synthesis, metal coatings, or thin film deposition.

3.
Molecules ; 25(7)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231145

RESUMO

This paper focuses on the dissociation of carbon dioxide (CO2) following the absorption processes of microwave radiation by noncontact metal wire (tungsten). Using a microwave plasma generator (MPG) with a single-mode cavity, we conducted an interaction of microwaves with a noncontact electrode in a CO2 atmosphere. High energy levels of electromagnetic radiation are generated in the focal point of the MPG's cylindrical cavity. The metal wires are vaporized and ionized from this area, subsequently affecting the dissociation of CO2. The CO2 dissociation is highlighted through plasma characterization and carbon monoxide (CO) quantity determination. For plasma characterization, we used an optical emission spectroscopy method (OES), and for CO quantity determination, we used a gas analyzer instrument. Using an MPG in the CO2 atmosphere, we obtained a high electron temperature of the plasma and a strong dissociation of CO2. After 20 s of the interaction between microwaves and noncontact electrodes, the quantity of CO increased from 3 ppm to 1377 ppm (0.13% CO). This method can be used in space applications to dissociate CO2 and refresh the atmosphere of closed spaces.


Assuntos
Dióxido de Carbono/química , Micro-Ondas , Gases em Plasma , Algoritmos , Monóxido de Carbono/química , Gases/química , Modelos Químicos , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...